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Both the infinite cluster and its backbone are self-similar at the percolation 
threshold, Pc. This self-similarity also holds at concentrations p near Pc, for 
length scales L which are smaller than the percolation connectedness length, 4. 
For L < 4, the number of bonds on the infinite cluster scales as LD, where the 
fractal dimensionality D is equal to (d - f l /u ) .  Geometrical fractal models, 
which imitate the backbone and on which physical models are exactly solvable, 
are presented. Above six dimensions, one has D = 4 and an additional scaling 
length must be included. The effects of the geometrical structure of the back- 
bone on magnetic spin correlations and on diffusion at percolation are also 
discussed. 
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1. I N T R O D U C T I O N  

M a n y  structures in physics are invar ian t  under  the change in length scale. 

In  particular,  self-similarity appears in the shapes of droplets at the critical 

temperature  of cont inuous  phase transitions,  in the shapes of the routes 
covered by r a n d o m  walks, in the shapes of long polymers (i.e., self-avoiding 
r a n d o m  walks), etc. 

As explained by Mandelbro t ,  (I'2) it is very convenien t  to describe 

self-similar structures using the no t ion  of the fractal  dimensionality, D. 
W h e n  the length scale is mult ipl ied by a factor b, the n u m b e r  of basic uni ts  

in the structure (e.g., lattice sites, bonds,  plaquettes, etc.) is mult ipl ied by a 
factor b D. 
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The aim of this paper is to review some of the applications of these 
ideas to the theory of percolation. In Section 2 we derive the fractal 
dimensionality of percolation clusters, and describe its measurements via 
Monte Carlo simulations. Section 3 then describes a family of fractal 
structures, which may be used to model the backbone of the infinite cluster 

a t  percolation. These simple ideas must be modified above six dimensions, 
and a generalization is reviewed in Section 4. Section 5 discusses the 
propagation of magnetic spin correlations at percolation, and Section 6 
mentions anomalous discussion and concludes the paper. 

2. SELF-SIMILARITY OF PERCOLATION CLUSTERS 

Consider a d-dimensional (hypercubic) lattice, in which sites are occu- 
pied (or empty) with probability p (or q = 1 - p ) .  For small p, one finds 
only small finite clusters of connected occupied sites (sites are connected 
via nearest-neighbor bonds). The typical linear size of these clusters grows 
with p, and diverges at the percolation threshold, pc, as ~e cc IP -Pc[  -v. For 
P > Pc there appears an infinite cluster, i.e., a cluster which connects the 
opposite boundaries of the system even when its size becomes infinite. 
The probability per site to belong to this cluster vanishes at Pc, as P~o cc 
(p - Z)~. 

Pictures of the infinite cluster at Pc look self-similar. (3~ The pictures 
contain empty areas of all sizes (down to the microscopic lattice distance, 
a), and look the same when coarse-grained into cells of size b • b and 
reduced in size by a factor b. It has therefore been stated (4'5~ that these 
clusters are self-similar, or fractal. This self-similarity disappears for p > Pc, 
on length scales larger than ~p, when the pictures look homogeneous. The 
same self-similarity is observed for finite clusters (both above and below 
pc), on length scales shorter than (e" 

A quantitative check of these statements may be performed as follows: 
Given a point on the infinite cluster, consider the number M(L) of points 
on the same cluster within a volume L a (of linear size L) centered at that 
point. Self similarity implies that 

M ( L )  ~ L ~ (1) 

We have recently (6~ studied two-dimensional (d = 2) Monte Carlo simula- 
tions of site percolation, with p >Pc = 0.5927. Plots of ln M versus l n L  
indeed exhibit the power law decay (1) with D = 1.900 + 0.009. This decay 
appears up to scales ~p cc (p - Pc)-~, with ~ = 1.33 _+ 0.08. For L > ( we 

CC d ~ B/~' find that M(L) L P~, and P~  ~p- r  with f i = O . 1 4 0 •  
0.007. 

In order to interpret these results, consider the conditional probability 
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p(r) that a point at a distance r from the origin (which belongs to the 
infinite cluster) will also belong to the infinite cluster. If scaling holds, then 
(for r >> a) the only relevant length is 4, and we expect the scaling form 

o(r) = P~(p ) f ( r / ( )  (2) 

The prefactor, P~(p), represents the expectation that the two sites (at r and 
at the origin) are uncorrelated. For r>>~, when we expect that o(r) 

P~(p), i.e., that f (x)  approaches a constant as x -~  oe. For r << ~ we 
expect p(r) to be independent of 4. This can be achieved only if f (x)  
~ x - P / "  for x << 1. We thus predict that o(r) ec r-fi/~ for r << 4. The "mass" 
M(L) is found via M(L)=  f~ddro(r), and one easily checks that M(L) 
ec La-r for L < 4, yielding Eq. (1), with 

D = d -  f i / p  (3) 
For larger scales, L > ~, we find M(L) ec (L/~)a( a-~/". The average den- 
sity }(L) is thus found to behave as L -B/~ for L < ~ and as P~(p) cc ~ -~/" 
for L > 4. Note that for L < ~ one has }(L) cc o(L). This can hold only if 
the infinite cluster is highly correlated, containing "holes" at a// length 
scales. Indeed, our measured values of D, fl, and u agree excellently well 
with Eq. (3). 

Similar studies can be performed on the backbone of the infinite 
cluster, in which all the "dead ends" (finite sections of the infinite cluster 
which can be cut off by cutting a single bond, and thus do not contribute to 
the propagation of dc current o r  of magnetic correlations) have been 
eliminated. The fractal dimensionality of the backbone at d = 2 is D 8 
1.6, (31 in agreement with D e = d -  fls/~, where fib ~0 .5 .  

3. FRACTAL MODEL FOR THE BACKBONE 

In addition to the fractal dimensionality, fractal structures are charac- 
terized by many other topological and geometrical parameters. For exam- 
ple, the order of ramification R at a point P is the smallest number of 
interactions which one must cut to isolate an (otherwise arbitrary) bounded 
subset that surrounds P and falls in the scaling range. (2'8) Monte Carlo 
simulations suggest (3) that the backbone at Pc is finitely ramified but not 
quasi-one-dimensional, i.e., that the minimum value of R, Rmin, is finite but 
larger than 2. 

We have recently investigated (9~ a family of nonrandom fractal lattices 
which imitate these properties. These fractals are d-dimensional generaliza- 
tions of the Sierpinski gasket: We start with a d-dimensional hypertetra- 
hedron. The midpoints of the edges are then connected, creating (d + l) 
smaller hypertetrahedra. The volume at the center (bounded by faces of 
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these new tetrahedra) is then erased. The procedure is repeated on the new 
tetrahedra, down to the microscopic length scale a. The fractal dimension- 
ality of these structures is 

D = ln(d + 1)/ ln2 (4) 

with values close to those of the real backbone at d = 1,2, 3, 4. We also 
have R m i  n = d + 1, which is the lowest value possible for fully d-dimen- 
sional structures. 

The advantage of models like the one presented above is that one can 
solve any physical problem exactly on them. (s) Putting resistors r on each of 
the "microscopic" bonds, we find (9) that the effective resistors at scale La 
(when those on all smaller scale are eliminated) behave as r(L) ec L(r, with 

(= ln[(d + 3)/(d + 1)l/ln2 (5) 
Writing the conductivity for p >Pc as o(p )ec (p -pc ) "ec~  -~ with /2 
= ~t/v, we expect that 

/ 2 = d - 2 + (  (6) 

Our result for /2 agrees reasonably well with direct estimates on the 
backbone for d = 1,2, 3. (9) 

In addition to the conductivity, one can also solve exactly many spin 
models on the Sierpinski gaskets. Since the order of ramification is finite, 
all spin models (with short-range interactions on the scale a) exhibit 
long-range order only at zero temperature ( T =  0). We solved various 
discrete spin models (the Ising model, the s-state Potts model), for Sier- 
pinski gaskets at both d =  2 and d = 3, (8'm) and found that as T-~0 the 
thermal correlation length always diverges as 

cc exp[A e x p ( B / T ) ]  (7) 

A comparison of this result with that of alternative geometrical pictures of 
the backbone at Pc is given below (Section 5). 

A similar solution of spin models with continuous symmetry (e.g., the 
X Y  or the Heisenberg model) yields 

c~ T-~/~ (8) 

Note that although the family of Sierpinski gaskets may not represent 
a unique model for the infinite cluster, it is still very useful as a test ground 
for the behavior of various models at percolation. 

4. PERCOLATION ABOVE SiX DIMENSIONS 

It turns out that the discussion which led to Eq. (3) must be modified 
for d > 6. For d < 6, hyperscaling relations show that Eq. (3) is equivalent 
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t o  

D =  • + y ) / v  (9) 

where y describes the divergence of the mean squared size of the clusters. 
Equation (9) also arises if one assumes "strong self-similarity," i.e., that the 
number of sites in a cluster of linear size ~p scales as s(~p)~ ~p. Since 
s(~p) cc ( p - p c )  - l /~  with 1 /o  = /3  + y being the "magnetic" exponent, ~7) 
Eq. (9) follows. {ll) 

Above six dimensions the critical exponents are known to assume their 
mean field values, /3 = 1, y = 1, v = 1/2. Thus, Eq. (3) predicts that 
D = d - 2, while Eq. (9) yields D = 4. We have recently shown that only 
the latter is correct. ~12~ The important new ingredient in the theory is the 
probability to find vertices at which three bonds meet, w. This probability 
turns out to be a "dangerous irrelevant variable" for d > 6. 

An alternative extreme to our fractal model (Section 3) is that of the 
"links and nodes" model. ~13'14~ In this model, the backbone of the infinite 
cluster is composed of quasi-one-dimensional links, which connect nodes. 
At high dimensions, the links are expected to behave as random walks, so 
that the actual number of sites on a backbone link at scale L is of order 
m B (L) ec L 2 (i.e., D e = 2). A fraction of these sites, proportional to w, have 
"dead ends," or "dangling bonds" attached to them. Using the known 
distribution of the finite clusters, it can be shown that the average "mass" 
Ma(L ) of such a dangling bond is also of order L2. (12~ Thus, 

M(L) wL 4 (10) 

In the above argument we assumed that the backbone cuts each 
"dangling bond" only once. In a volume of linear size L, the number of 
sites on the infinite cluster is M(L)  ccwL 4, and the number of sites on the 
backbone is MB(L ) cc L 2. The number of possible additional "meetings" 
between them is thus of order wM(L)M~(L) ,  i.e., w2L 6, and the density of 
such vertices is wZL 6-d. (Alternatively, this is the density of "meetings" 
between the "full" infinite cluster, of mass wL 4, and an "average" dangling 
bond, of "mass" L2.) For d > 6 we see that this renormalized density 
decreases with increasing L, and therefore our argument is consistent at 
large L. The theory must be modified for d < 6. 

Note also that the density of vertices becomes smaller than unity for 
L > L w, where w2L 6 - a =  1. This explains the physical meaning of Lw: the 
vertices are in fact dense "blobs" of size Lw, and the geometrical picture 
used above applies only for L > L w. 

The parameter w also arises formally (as the coefficient of the cubic 
term) in the context of the s-state Potts model. (15~ In the limit s ~  1, this 
model describes percolation. For d > 6, the critical behavior of the model is 
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governed by the Gaussian fixed point, and scaling near that point may be 
used to show that M ( L )  now depends on both L/~p and (p /L~,  (12) 

( L i p  ) (11) M(L, ,,Lw)=W-'V2Ld  

For L w << L<<~ e, this reduces to Eq. (10). For L>>~ r, this becomes M 
cx Ldp~  cc L d / ( w ~ ) .  In contrast to the case d < 6, the crossover between 
these two limits does not happen at L ~ .  Instead, we find a series of 
crossover lengths, between ~e and L l a: ~e2/(d-4), at which different physical 
quantities exhibit crossover. 

The backbone of the infinite cluster is thus self-similar, for d > 6, only 
in the range L~ < L < L~. In this range, D B = 2 and the geometry is that of 
random walks. This is clearly very different from the gasket model, pre- 
sented in Section 3. A combination of the two models, in which more and 
more quasi-one-dimensional links are added as d is increased, will certainly 
yield an improved description. 

5. MAGNETIC CORRELATIONS 

Consider now the Ising model on the dilute lattice, with the Hamiho- 
nian 

o ~  = -- ~,  Jij.SiSj 
(ij) 

where S i = + 1, and Jij = J (if both the nearest neighbor sites i and j are 
occupied) or Jo = 0 (otherwise). The model has no long-range order at 
P < Pc, and orders at the temperature To(p) for p > Pc, with Tc(p)--~ 0 as 
P--~Pc- The percolation point p = Pc, T = 0 is thus a multicritical point. If 
one writes 

~ o c ( p - p c )  ~X[e72K/ (p  -- Pc) ~ ] (12) 

with K = J / k B T ,  then the crossover exponent 4, Obtained from the s--~ 1 
limit of the anisotropic s-state Potts model, turns out to be equal to unity 
for all d. (16) Thus, the critical line is given by 

exp[ - 2 J / k B r c ( p )  ] ec (p  - pc)O= (p - Pc) (13) 

Consider now the "link and nodes" model. Two spins which are 
separated by a distance r < ~ are assumed to have only one effective link 
between them. In the naive model, this link is assumed to be quasi-one- 
dimensional, composed of L(r)  bonds. Decimating these bonds, one can 
replace them by an effective coupling constant KL, given by 

tanh K L = (tanh K)  c (14) 
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For large K, this reduces to exp(-2KL)-----L exp( -2K) .  If we assume that 
the links meet at nodes which are separated by a distance ~p, and that 
L(~p) cc (p - pc)-~, then Eq. (12) follows. 

At d = 2, one has (p cc (p - P c ) - " ,  with v = 4/3.  Therefore, the above 
naive picture and ,~ -- 1 imply that L(~) < ~, which is impossible. Moreover, 
the model assumes that all the "mass" is in L. Since L(~p)cc ~ / " ,  this 
implies that D -- ~/v  = 1/v, in strong disagreement with known values for 
d < 6. One therefore needs a modified model. A possible modification, 
suggested by Stanley and Coniglio, (11) adds within each link "blobs" of 
spins which are multiply connected. If two spins are connected by two 
bonds in parallel, then the effective coupling Constant between them is 2K. 
Since tanh 2 K ~  1 - 2e -4K, such a factor will not contribute to the renor- 
malized coupling constant K L at the leading order e-2K. To this order, the 
power L on the right-hand side of Eq. (14) must be replaced by L1, i.e., the 
number of singly connected bonds along the link (cutting of such a bond 
breaks the connection between the ends of the link). The number of these 
"cutting bonds," L1, may be much smaller than L. Writing L~ o: ( p -  
pc)-~', we thus identify q~ = (1. Conig li0(17) recently presented a general 
proof of the result ~1 = 1, in any dimension, confirming that ~ = 1. 

The above argument is valid only if e--2KL~L~e--2K<<I. AS we 
approachpc at a fixed temperature, L 1 increases, Lie -2K is no longer small, 
and the expansion of tanh K r is no longer justified. Moreover, the number 
of bonds within the "blobs" is of order L cc ~DB >> L~. In addition to 
Lie -2K, we expect "higher-order" terms, like L2 e-4g. L 2 is the number of 
pairs of bonds such that the cutting of both breaks the connection between 
the ends of the link. Writing L2ec(p-p~)-;2,  this term behaves as 
e-4K(p _ p~)-~2. We expect that ~'2 > ~'1. As soon as L2 e-2K > Li, i.e., 

( p -  < e (15) 

these terms will dominate and the scaling with a single variable, Eq. (12), 
will have to be modified. (is) 

Consider now the spin-spin correlation function (SoSr). On length 
scales r < ~p, the two spins are within a single "link." The correlation 
function should, therefore, not depend on ~p. In the spirit of the Coniglio 
model, the function (SOS,.) is now given by 

(SoS~) = (tanh K)L'(r)~ e-  r,(~)/~ 

where ~l = �89 e2K is the one-dimensional Ising correlation length, while L1(r ) 
is the number of singly connected bonds within a distance r. We now 
generalize the Stanley-Coniglio picture, by adding the assumption that the 
geometry is self-similar on length scales r < ~p. Noting that Ll(~p) cc ~,/~, 
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we thus write L~(r) = A t r  ~'/" and obtain 

(SOS,)  ~ exp ( -  a l r L / ' / ~ , )  (16) 

Clearly, the structure factor J ( q )  obtained from Eq. (16) will be quite 
different from the usual Lorentzian one; at large q we expect that J ( q )  
oc ~p-~,lp / q2 + Ll~.(18) 

Once the "blobs" are taken into account, in a self-similar way, the 
exponent in Eq. (16) may have the additional term Ar~2/'/~21, which 
dominates at the intermediate length scales ~,/(~2-r < r < ~p.(~s) At p 
=Po, ~e = oo, and this new term dominates for large r, thus affecting the 
small-q dependence of J ( q ) .  The detailed q dependence of J ( q )  at Pc is 
therefore much more complex than hitherto expected. 

If one ignores all these effects, then Eq. (12) implies that at p =Pc one 
has 

oc (e -2K) v/~oc e 2K" (17) 

However, one is tempted to speculate that the growing role played by the 
multiply connected bonds, as explained above, may eventually yield a 
crossover to Eq. (7). 

6. CONCLUSION 

Due to limitations in space and time, we did not have a chance here to 
review the recent interesting developments in our understanding of anoma- 
lous diffusion at percolation. (19) The assumption of self-similarity implies 
that the mean square distance traveled by a random walker after t steps on 
the infinite cluster at Pc is given by 

(rZ(t))~ cc t 2/(2+~ (t8) 

The exponent (2 + 0) is sometimes referred to as the fractal dimensionality 
of the random walk at percolation. It has recently been conjectured (2~ that 
2 + 0 = 3 D / 2 ,  but this remains to be checked in detail. 

Many other applications, both directly on the percolation clusters and 
on Sierpinski gaskets, have recently appeared in the literature. As far as this 
short review is concerned, it is hoped that the reader will be left with the 
impression that self-similarity is very useful in discussing phenomena at the 
percolation threshold, and that there remain many interesting related 
problems for future study. 
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